A simple electric heater, which has efficiency greater than 1

A Bessler, gravity, free-energy free-for-all. Registered users can upload files, conduct polls, and more...

Moderator: scott

Post Reply
User avatar
Tarsier79
Addict
Addict
Posts: 5214
Joined: Fri Mar 12, 2010 2:17 am
Location: Qld, Australia

re: A simple electric heater, which has efficiency greater t

Post by Tarsier79 »

And I am checking for the last time whether this hypothesis of mine is correct or not.
And that took 0.000012 milliseconds.

Get your programmer to make you a flying unicorn, so you can fly off to D&D land where your faulty physics engine might make sense.
PeterAX
Aficionado
Aficionado
Posts: 351
Joined: Mon Jan 25, 2021 1:56 pm

re: A simple electric heater, which has efficiency greater t

Post by PeterAX »

To Tarsier79/MrTim/WaltzCee.
===============================
Firstly take your medicine (double dose!:)) and just after that read carefully and thoroughly (and many times, if necessary!) the text below.
--------------------------------------------------------
Constant current I of 7.98 A flows through a standard sulphuric acid solution (which is a standard liquid conductor/electrolyte) within a period of 1 second. The Ohmic resistance of the electrolyte is equal to 0.5 Ohm.
---------------------------------------------------------------------------------
QUESTION 1. What is the value of the electric energy, which is consumed by the electrolyte, that is, how many Joules of electric energy does the electrolyte consume?
QUESTION 2. What is the value of the Joule's heat, which is generated by the electrolyte, that is, how many Joules of Joule's heat does the electrolyte generate?
---------------------------------------------------------------------------------
Simply answer the above two simple questions.
Looking forward to your two answers.
User avatar
WaltzCee
Addict
Addict
Posts: 3361
Joined: Sun Dec 09, 2007 9:52 pm
Location: Huntsville, TX
Contact:

Re: re: PERPETUAL FLOATING TURD THREAD

Post by WaltzCee »

...................................................................................................................
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
this is a test
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Image
........................¯\_(ツ)_/¯
¯\_(ツ)_/¯ the future is here ¯\_(ツ)_/¯
Advocate of God Almighty, maker of heaven and earth and redeemer of my soul.
Walter Clarkson
© 2023 Walter W. Clarkson, LLC
All rights reserved. Do not even quote me w/o my expressed written consent.
PeterAX
Aficionado
Aficionado
Posts: 351
Joined: Mon Jan 25, 2021 1:56 pm

re: A simple electric heater, which has efficiency greater t

Post by PeterAX »

To Tarsier79/MrTim/WaltzCee.
===============================
Take your medicine! Triple dose!:) You really need a serious medical help and it's an emergency!:) I will call your doctor and will ask him to imprison you in the hospital!:)
Last edited by PeterAX on Tue Aug 03, 2021 3:21 pm, edited 2 times in total.
PeterAX
Aficionado
Aficionado
Posts: 351
Joined: Mon Jan 25, 2021 1:56 pm

re: A simple electric heater, which has efficiency greater t

Post by PeterAX »

To those members of good will of this forum, who are honestly searching for the truth.
=============================================
Constant current I of 7.98 A flows through a standard sulphuric acid solution (which is a standard liquid conductor/electrolyte) within a period of 1 second. The Ohmic resistance of the electrolyte is equal to 0.5 Ohm.
---------------------------------------------------------------------------------
QUESTION 1. What is the value of the electric energy, which is consumed by the electrolyte, that is, how many Joules of electric energy does the electrolyte consume?
QUESTION 2. What is the value of the Joule's heat, which is generated by the electrolyte, that is, how many Joules of Joule's heat does the electrolyte generate?
---------------------------------------------------------------------------------
Simply answer the above two simple questions.
Looking forward to your two answers for the 2nd time.
User avatar
Tarsier79
Addict
Addict
Posts: 5214
Joined: Fri Mar 12, 2010 2:17 am
Location: Qld, Australia

re: A simple electric heater, which has efficiency greater t

Post by Tarsier79 »

What is the length of a standard piece of string wound into a ball that has a diameter of 150mm?........

Your questions are naive and show your lack of understanding.
User avatar
WaltzCee
Addict
Addict
Posts: 3361
Joined: Sun Dec 09, 2007 9:52 pm
Location: Huntsville, TX
Contact:

re: A simple electric heater, which has efficiency greater t

Post by WaltzCee »

Tarsier79 wrote:What is the length of a standard piece of string wound into a ball that has a diameter of 150mm?........

Your questions are naive and show your lack of understanding.
Oh, oh I know this one! The answer is 'yes'!!

We'd rather talk to George. He was much nicer.
........................¯\_(ツ)_/¯
¯\_(ツ)_/¯ the future is here ¯\_(ツ)_/¯
Advocate of God Almighty, maker of heaven and earth and redeemer of my soul.
Walter Clarkson
© 2023 Walter W. Clarkson, LLC
All rights reserved. Do not even quote me w/o my expressed written consent.
PeterAX
Aficionado
Aficionado
Posts: 351
Joined: Mon Jan 25, 2021 1:56 pm

re: A simple electric heater, which has efficiency greater t

Post by PeterAX »

To WaltzCee/MrTim/Tarsier79.
===========================
Take your medicine!:) Quadruple dose! Combine it with a double dose of whiskey!:) Hope this will help!:)
PeterAX
Aficionado
Aficionado
Posts: 351
Joined: Mon Jan 25, 2021 1:56 pm

re: A simple electric heater, which has efficiency greater t

Post by PeterAX »

THE TEXT BELOW DESCRIBES SOLELY AND ONLY REAL EXPERIMENTS!
======================
Here is a detailed description of our first group of experiments.
======================
======================
EXPERIMENT 1.
1) A standard copper wire (a standard SOLID conductor) is connected to a standard DC source thus forming a circuit.
2) The circuit is equipped with a standard ammeter and with a standard ohmmeter. Besides we have at our disposal a standard chronometer.
3) The ammeter registers a current of 7.98 A.
4) The ohmmeter registers an Ohmic resistance of 0.5 Ohm.
5) The chronometer registers a time interval of 1 second. (A current of 7.98 A flows through a copper wire of Ohmic resistance of 0.5 Ohm within a period of 1 second.)
6) Using (a) the above three experimental results (7.98 A, 0.5 Ohm and 1 second) and (b) the first Joule's law of heating we can easily calculate that:
a) the electric energy, consumed by the copper wire, is just equal to 31.84 J;
b) the so called Joule's heat, generated by the copper wire, is just equal to 31.84 J too.
7) Please note that in order to get the amount of generated Joule's heat of 31.84 J we need solely and only (a) three experimental results (7.98 A, 0.5 Ohm and 1 second) and (b) three measuring devices (an ammeter, an ohmmeter and a chronometer). No electric engineer in the world would measure the generated heat of 31.84 J by using of calorimetry methods. Every electric engineer in the world would take for granted this generated heat of 31.84 J. Because otherwise he/she would accept the fact that the first Joule's law of heating (experimentally proved millions of times within a period of 200 years for any standard solid, liquid or gaseous conductor) is not valid.
=======================
=======================
EXPERIMENT 2.
1) A standard sulphuric acid solution (a standard LIQUID conductor/a standard electrolyte) is connected to a standard DC source thus forming a circuit.
2) The circuit is equipped with a standard ammeter and with a standard ohmmeter. Besides we have at our disposal a standard chronometer.
3) The ammeter registers a current of 7.98 A.
4) The ohmmeter registers an Ohmic resistance of 0.5 Ohm.
5) The chronometer registers a time interval of 1 second. (A current of 7.98 A flows through an electrolyte of Ohmic resistance of 0.5 Ohm within a period of 1 second.)
6) Using (a) the above three experimental results (7.98 A, 0.5 Ohm and 1 second) and (b) the first Joule's law of heating we can easily calculate that:
a) the electric energy, consumed by the electrolyte, is just equal to 31.84 J;
b) the so called Joule's heat, generated by the electrolyte, is just equal to 31.84 J too.
7) Please note that in order to get the amount of generated Joule's heat of 31.84 J we need solely and only (a) three experimental results (7.98 A, 0.5 Ohm and 1 second) and (b) three measuring devices (an ammeter, an ohmmeter and a chronometer). No electric engineer in the world would measure the generated heat of 31.84 J by using of calorimetry methods. Every electric engineer in the world would take for granted this generated heat of 31.84 J. Because otherwise he/she would accept the fact that the first Joule's law of heating (experimentally proved millions of times within a period of 200 years for any standard solid, liquid or gaseous conductor) is not valid.
-------------------------------------------
(Note. It is evident that the last items 1 - 7 of this Experiment 2 are absolutely identical to items 1 - 7 of previous Experiment 1. The latter is a clear manifestation of the first Joule' law of heating, which has been experimentally proved millions of times within a period of 200 years for any standard solid, liquid or gaseous conductor.)
-------------------------------------------
8/ While a current of 7.98 A flows through the electrolyte within a period of 1 second however a certain amount of hydrogen has been generated. The mass of the generated hydrogen is just equal to 0.0000000833112 kg as follows from the first Faraday's law of electrolysis.
9) Please note that in order to get the mass of the released hydrogen we need solely and only (a) two experimental results (7.98 A and 1 second) and (b) two related measuring devices (an ammeter and a chronometer). No expert in electrochemistry in the world would measure the mass of the generated hydrogen by using of balance, scales or any other weighing machine. Every expert in electrochemistry in the world would take for granted this mass of 0.0000000833112 kg. Because otherwise he/she would accept the fact that the first Faraday's law of electrolysis (experimentally proved millions of times within a period of 200 years) is not valid.
10) If we burn/explode the released hydrogen, then a certain amount of heat would be generated. And this heat would be just equal to 11.83 J . In other words, we can write down the equality
H = (HHV) x (m) = 11.83 J,
where
H = heat generated by burning/exploding of the released hydrogen
HHV = higher heating value of hydrogen = 142 MJ/kg
m = mass of the released hydrogen = 0.0000000833112 kg
11) Please note that no expert in thermodynamics in the world would measure the generated heat of 11.83 J by using of calorimetry methods. Every expert in thermodynamics in the world would take for granted this generated heat of 11.83 J. Because otherwise he/she would accept the fact that the value of the hydrogen's HHV (experimentally proved millions of times within a period of 200 years) is not valid.
12) In one word, on one hand we have a consumed electric energy of 31.84 J and this is the inlet energy. On the other hand we have (a) Joule's heat of 31.84 J and (b) heat H of 11.83 J, which is generated by burning/exploding of the released hydrogen. The sum of the two last pieces of energy is just equal to the outlet energy.
13) Therefore we can write down the inequalities
(31.84 J) + (11.83 J) > 31.84 J <=> 43.67 J > 31.84 J <=> outlet energy > inlet energy.
14) For the efficiency/COP of the above described process we can write down the equality
efficiency = COP = (43.67 J)/(31.84 J) = 1.37
15) And it is evident that COP = 1.37 <=> COP > 1.
==============================
==============================
SUMMARY.
1) The above experimental results for inlet and outlet energies are based on:
a) the readings of three standard measuring devices (an ammeter, an ohmmeter and a chronometer);
b) the validity of the first Joule's law of heating (experimentally proved millions of times within a period of 200 years for any standard solid, liquid or gaseous conductor);
c) the validity of the first Faraday's law of electrolysis (experimentally proved millions of times within a period of 200 years for any standard electrolyte);
d) the validity of the value of the hydrogen's HHV (experimentally proved millions of times within a period of 200 years).
2) In one word, having in mind the text above we can conclude that any of the millions (either industrial or laboratory) standard electrolyzers all over the world is actually a heater, which has COP/efficiency greater than 1.
-----------------------------------------------------
(Note. Any standard (either industrial or laboratory) electrolyzer could be designed as a built-with-fin-tubes (i.e. with extended-surfaces) heat exchanger. In this way there would be more emphasis on cramming more heat-transfer surfaces into less and less volume. This approach could be suitable for a better utilization of the released Joule's heat. Besides the same built-with-fin-tubes (i.e. with extended-surfaces) heat exchanger design could be used for the box/container, in which the burning of the released hydrogen would take place. In this way as if there would be a better utilization of the heat, generated by the burning of the released hydrogen.)
------------------------------------------------------
3) If the first Joule's law of heating and/or the first Faraday's law of electrolysis and/or the value of the hydrogen's HHV proved to be experimentally invalid, then this fact would lead to the creation of entirely new and revolutionary branch of science and technology. The latter would be a wonderful alternative too.
===============================
===============================
That's all about our first group of experiments.
===============================
===============================
And here is a short description of our second group of experiments.
1) Actually our second group of experiments is absolutely identical to our first group of experiments (the latter being described in our previous post) with the only difference that Ohmic resistance is decreased 10 times and as a result the ohmmeter registers an Ohmic resistance of 0.05 Ohm. In this case:
a) the consumed electric energy is equal to 3.184 J;
b) the generated Joule's heat is equal to 3.184 J too;
c) the heat, generated by the burning/exploding of the released hydrogen, is equal to 11.83 J (which is just the same as in our first group of experiments),
2) So for efficiency/COP we can write down the equalities
COP = ((3.184 J) + (11.83 J))/(3.184 J) <=> COP = (15.014 J)/(3.184 J) <=> COP = 4.72
3) It is evident that
COP = 4.72 <=> COP > 1.
4) In one word, (keeping constant current I and time period t) the smaller the Ohmic resistance R, the bigger the efficiency/COP.
===============================
===============================
There is a third group of experiments of ours, which has even a greater scientific, technology and commercial value than the above described two groups of experiments of ours. But for the present we would not like to reveal the secret of our third group of experiments.
===============================
===============================
THE TEXT ABOVE DESCRIBES SOLELY AND ONLY REAL EXPERIMENTS!
===============================
===============================
Do you have any objections against any part of the text above?
Looking forward to your answer.
User avatar
MrTim
Aficionado
Aficionado
Posts: 939
Joined: Thu Nov 06, 2003 11:05 pm
Location: "Excellent!" Besslerwheel.com's C. Montgomery Burns
Contact:

re: A simple electric heater, which has efficiency greater t

Post by MrTim »

Thu Aug 05, 2021 8:39 am Post subject: re: A simple electric heater, which has efficiency greater t
To WaltzCee/MrTim/Tarsier79.
==============
Take your medicine!:) Quadruple dose! Combine it with a double dose of whiskey!:) Hope this will help!:)
Oh, thank you so very much for dragging me into this, again. >:-(
We'd rather talk to George. He was much nicer.
George, if you can get to a safe place, tell us where PeterAX touched you. Petey is a very bad man and shouldn't do such things to you, things the Polizia would like to discuss with him...
"....the mechanism is so simple that even a wheel may be too small to contain it...."
"Sometimes the harder you look the better it hides." - Dilbert's garbageman
PeterAX
Aficionado
Aficionado
Posts: 351
Joined: Mon Jan 25, 2021 1:56 pm

re: A simple electric heater, which has efficiency greater t

Post by PeterAX »

To WaltzCee/MrTim/Tarsier79.
===========================
Did you drink whiskey this morning?:) No? A gross blunder!:) Drink a triple dose immediately!:) Hope this will help you to begin to think more clearly!:)
Regards,
PeterAX
Aficionado
Aficionado
Posts: 351
Joined: Mon Jan 25, 2021 1:56 pm

re: A simple electric heater, which has efficiency greater t

Post by PeterAX »

THE TEXT BELOW DESCRIBES SOLELY AND ONLY REAL EXPERIMENTS!
======================
Here is a detailed description of our first group of experiments.
======================
======================
EXPERIMENT 1.
1) A standard copper wire (a standard SOLID conductor) is connected to a standard DC source thus forming a circuit.
2) The circuit is equipped with a standard ammeter and with a standard ohmmeter. Besides we have at our disposal a standard chronometer.
3) The ammeter registers a current of 7.98 A.
4) The ohmmeter registers an Ohmic resistance of 0.5 Ohm.
5) The chronometer registers a time interval of 1 second. (A current of 7.98 A flows through a copper wire of Ohmic resistance of 0.5 Ohm within a period of 1 second.)
6) Using (a) the above three experimental results (7.98 A, 0.5 Ohm and 1 second) and (b) the first Joule's law of heating we can easily calculate that:
a) the electric energy, consumed by the copper wire, is just equal to 31.84 J;
b) the so called Joule's heat, generated by the copper wire, is just equal to 31.84 J too.
7) Please note that in order to get the amount of generated Joule's heat of 31.84 J we need solely and only (a) three experimental results (7.98 A, 0.5 Ohm and 1 second) and (b) three measuring devices (an ammeter, an ohmmeter and a chronometer). No electric engineer in the world would measure the generated heat of 31.84 J by using of calorimetry methods. Every electric engineer in the world would take for granted this generated heat of 31.84 J. Because otherwise he/she would accept the fact that the first Joule's law of heating (experimentally proved millions of times within a period of 200 years for any standard solid, liquid or gaseous conductor) is not valid.
=======================
=======================
EXPERIMENT 2.
1) A standard sulphuric acid solution (a standard LIQUID conductor/a standard electrolyte) is connected to a standard DC source thus forming a circuit.
2) The circuit is equipped with a standard ammeter and with a standard ohmmeter. Besides we have at our disposal a standard chronometer.
3) The ammeter registers a current of 7.98 A.
4) The ohmmeter registers an Ohmic resistance of 0.5 Ohm.
5) The chronometer registers a time interval of 1 second. (A current of 7.98 A flows through an electrolyte of Ohmic resistance of 0.5 Ohm within a period of 1 second.)
6) Using (a) the above three experimental results (7.98 A, 0.5 Ohm and 1 second) and (b) the first Joule's law of heating we can easily calculate that:
a) the electric energy, consumed by the electrolyte, is just equal to 31.84 J;
b) the so called Joule's heat, generated by the electrolyte, is just equal to 31.84 J too.
7) Please note that in order to get the amount of generated Joule's heat of 31.84 J we need solely and only (a) three experimental results (7.98 A, 0.5 Ohm and 1 second) and (b) three measuring devices (an ammeter, an ohmmeter and a chronometer). No electric engineer in the world would measure the generated heat of 31.84 J by using of calorimetry methods. Every electric engineer in the world would take for granted this generated heat of 31.84 J. Because otherwise he/she would accept the fact that the first Joule's law of heating (experimentally proved millions of times within a period of 200 years for any standard solid, liquid or gaseous conductor) is not valid.
-------------------------------------------
(Note. It is evident that the last items 1 - 7 of this Experiment 2 are absolutely identical to items 1 - 7 of previous Experiment 1. The latter is a clear manifestation of the first Joule' law of heating, which has been experimentally proved millions of times within a period of 200 years for any standard solid, liquid or gaseous conductor.)
-------------------------------------------
8/ While a current of 7.98 A flows through the electrolyte within a period of 1 second however a certain amount of hydrogen has been generated. The mass of the generated hydrogen is just equal to 0.0000000833112 kg as follows from the first Faraday's law of electrolysis.
9) Please note that in order to get the mass of the released hydrogen we need solely and only (a) two experimental results (7.98 A and 1 second) and (b) two related measuring devices (an ammeter and a chronometer). No expert in electrochemistry in the world would measure the mass of the generated hydrogen by using of balance, scales or any other weighing machine. Every expert in electrochemistry in the world would take for granted this mass of 0.0000000833112 kg. Because otherwise he/she would accept the fact that the first Faraday's law of electrolysis (experimentally proved millions of times within a period of 200 years) is not valid.
10) If we burn/explode the released hydrogen, then a certain amount of heat would be generated. And this heat would be just equal to 11.83 J . In other words, we can write down the equality
H = (HHV) x (m) = 11.83 J,
where
H = heat generated by burning/exploding of the released hydrogen
HHV = higher heating value of hydrogen = 142 MJ/kg
m = mass of the released hydrogen = 0.0000000833112 kg
11) Please note that no expert in thermodynamics in the world would measure the generated heat of 11.83 J by using of calorimetry methods. Every expert in thermodynamics in the world would take for granted this generated heat of 11.83 J. Because otherwise he/she would accept the fact that the value of the hydrogen's HHV (experimentally proved millions of times within a period of 200 years) is not valid.
12) In one word, on one hand we have a consumed electric energy of 31.84 J and this is the inlet energy. On the other hand we have (a) Joule's heat of 31.84 J and (b) heat H of 11.83 J, which is generated by burning/exploding of the released hydrogen. The sum of the two last pieces of energy is just equal to the outlet energy.
13) Therefore we can write down the inequalities
(31.84 J) + (11.83 J) > 31.84 J <=> 43.67 J > 31.84 J <=> outlet energy > inlet energy.
14) For the efficiency/COP of the above described process we can write down the equality
efficiency = COP = (43.67 J)/(31.84 J) = 1.37
15) And it is evident that COP = 1.37 <=> COP > 1.
==============================
==============================
SUMMARY.
1) The above experimental results for inlet and outlet energies are based on:
a) the readings of three standard measuring devices (an ammeter, an ohmmeter and a chronometer);
b) the validity of the first Joule's law of heating (experimentally proved millions of times within a period of 200 years for any standard solid, liquid or gaseous conductor);
c) the validity of the first Faraday's law of electrolysis (experimentally proved millions of times within a period of 200 years for any standard electrolyte);
d) the validity of the value of the hydrogen's HHV (experimentally proved millions of times within a period of 200 years).
2) In one word, having in mind the text above we can conclude that any of the millions (either industrial or laboratory) standard electrolyzers all over the world is actually a heater, which has COP/efficiency greater than 1.
-----------------------------------------------------
(Note. Any standard (either industrial or laboratory) electrolyzer could be designed as a built-with-fin-tubes (i.e. with extended-surfaces) heat exchanger. In this way there would be more emphasis on cramming more heat-transfer surfaces into less and less volume. This approach could be suitable for a better utilization of the released Joule's heat. Besides the same built-with-fin-tubes (i.e. with extended-surfaces) heat exchanger design could be used for the box/container, in which the burning of the released hydrogen would take place. In this way as if there would be a better utilization of the heat, generated by the burning of the released hydrogen.)
------------------------------------------------------
3) If the first Joule's law of heating and/or the first Faraday's law of electrolysis and/or the value of the hydrogen's HHV proved to be experimentally invalid, then this fact would lead to the creation of entirely new and revolutionary branch of science and technology. The latter would be a wonderful alternative too.
===============================
===============================
That's all about our first group of experiments.
===============================
===============================
And here is a short description of our second group of experiments.
1) Actually our second group of experiments is absolutely identical to our first group of experiments (the latter being described in our previous post) with the only difference that Ohmic resistance is decreased 10 times and as a result the ohmmeter registers an Ohmic resistance of 0.05 Ohm. In this case:
a) the consumed electric energy is equal to 3.184 J;
b) the generated Joule's heat is equal to 3.184 J too;
c) the heat, generated by the burning/exploding of the released hydrogen, is equal to 11.83 J (which is just the same as in our first group of experiments),
2) So for efficiency/COP we can write down the equalities
COP = ((3.184 J) + (11.83 J))/(3.184 J) <=> COP = (15.014 J)/(3.184 J) <=> COP = 4.72
3) It is evident that
COP = 4.72 <=> COP > 1.
4) In one word, (keeping constant current I and time period t) the smaller the Ohmic resistance R, the bigger the efficiency/COP.
===============================
===============================
There is a third group of experiments of ours, which has even a greater scientific, technology and commercial value than the above described two groups of experiments of ours. But for the present we would not like to reveal the secret of our third group of experiments.
===============================
===============================
THE TEXT ABOVE DESCRIBES SOLELY AND ONLY REAL EXPERIMENTS!
===============================
===============================
Do you have any objections against any part of the text above?
Looking forward to your answer for the 2nd time.
User avatar
WaltzCee
Addict
Addict
Posts: 3361
Joined: Sun Dec 09, 2007 9:52 pm
Location: Huntsville, TX
Contact:

re: PERPETUAL FLOATING TURD THREAD

Post by WaltzCee »

PeterAX wrote:&#128169;
again? Can't you be a little more creative?
same old same old spam.
........................¯\_(ツ)_/¯
¯\_(ツ)_/¯ the future is here ¯\_(ツ)_/¯
Advocate of God Almighty, maker of heaven and earth and redeemer of my soul.
Walter Clarkson
© 2023 Walter W. Clarkson, LLC
All rights reserved. Do not even quote me w/o my expressed written consent.
PeterAX
Aficionado
Aficionado
Posts: 351
Joined: Mon Jan 25, 2021 1:56 pm

re: A simple electric heater, which has efficiency greater t

Post by PeterAX »

To WaltzCee/MrTim/Tarsier79.
===========================
Try some Russian vodka!:) Because as if the whiskey therapy does not work!:) (But be careful -- don't drink too much in the beginning!:))
PeterAX
Aficionado
Aficionado
Posts: 351
Joined: Mon Jan 25, 2021 1:56 pm

re: A simple electric heater, which has efficiency greater t

Post by PeterAX »

Consider carefully and thoroughly (and many times, if necessary!) the link https://www.youtube.com/watch?v=BAydFMDKj2Y and answer the two simple questions at the end of this text!
--------------------------------------------------------------------------
Constant current I of 7.98 A flows through a standard sulphuric acid solution (which is a standard liquid conductor/electrolyte) within a period of 1 second. The Ohmic resistance of the electrolyte is equal to 0.5 Ohm.
---------------------------------------------------------------------------------
QUESTION 1. What is the value of the electric energy, which is consumed by the electrolyte, that is, how many Joules of electric energy does the electrolyte consume?
QUESTION 2. What is the value of the Joule's heat, which is generated by the electrolyte, that is, how many Joules of Joule's heat does the electrolyte generate?
---------------------------------------------------------------------------------
Simply answer the above two simple questions.
Looking forward to your two answers for the 1st time.
Post Reply